科研统计助手
医学科研资讯
前沿热点动态
统计分析服务
当前位置: 菁英统计工作室 > 统计知识 > 软件技巧 > SPSS应用 > 正文
SPSS中绘制ROC曲线
作者:Admin  更新时间:2010-06-01  来源 百度百科 本条信息浏览人次共有

 ROC(Receiver Operating Characteristic)曲线,用于二分类判别效果的分析与评价.一般自变量为连续变量,因变量为二分类变量.
 
基本原理是:通过判断点(cutoff point/cutoff value)的移动,获得多对灵敏度(sensitivity)和误判率(1-Specificity(特异度)),以灵敏度为纵轴,以误判率为横轴,连接各点绘制曲线,然后计算曲线下的面积,面积越大,判断价值越高. 灵敏度:就是把实际为真值的判断为真值的概率. 特异度:就是把实际为假值的判断为假值的概率. 误判率:就是把实际为假值的判断为真值的概率,其值等于1-特异度. 将绘成的曲线与斜45度的直线对比,若差不多重合,说明自变量对因变量的判断价值很差,若越远离斜45度的直线即曲线下的面积越大,说明自变量对因变量的判断价值越好,即根据自变量可以较为正确的判断因变量.
 
使用SPSS的操作过程如下: Graphs/ROC Curve:Test variable选自变量(连续型变量),state varibale选因变量(二分类变量)display的选项一般全选. 运行结果:1.ROC曲线,可直观地看到曲线形状. 2.Area under the curve:曲线下方的面积,包括面积值,显著性分析,置信区间. 3.Coordinates of the curve:ROC曲线各点对应的灵敏度和误判率.

 

上一篇:SPSS中Recode、Compute、Count、If命令
下一篇:哑变量在SPSS和SAS进行回归分析应用

本站所发表的文章,大部分严格筛选,来源于各相关专业论坛或专业网站,内容仅供大家学习和参阅尊重原作者版权,勿用于商业用途,转载请注明来源。如有学术争议的文章,或可能与事实不符的,与本站立场无关。如有影响到您权益的文章,请及时通知本站,本站立即删除。谢谢监督。
推荐阅读
 
热门文章

Copyright 2010 Powered By 菁英统计工作室 www.tjstat.com 地址1:武汉市珞瑜路1037号 430074 ; 地址2:武汉市航空路13号 430030
邮箱:tjstat@126.com QQ: 点击这里给我发消息 点击这里给我发消息
鄂ICP备10020011号 |